Lipsky

Numpy generate array

字数统计: 448阅读时长: 2 min
2018/09/14 Share

Create array#

1
2
3
4
5
a = np.array([[1,2,3,4],[5,6,7,8]])
print(a)
'''array([[1, 2, 3, 4],
[5, 6, 7, 8]])
'''
  • ndarray.ndim: show the dimensionality of array
1
2
a.ndim
# 2
  • ndarray.shape: show the length of array in every direction
1
2
a.shape
# (2,4)
  • ndarray.size: show the size of array(the value = the product of every item in shape)
1
2
a.size
# 8
  • ndarray.dtype: assign the data type
1
2
a.dtype
# dtype('int64')
  • ndarray.itemsize: calculate the size of every item in the memory. e.g. a float64 type of data occupies 8 bit in computer memory.

  • ndarray.data: show the address of this array in memory.

Create array with assigned data#

  • int
1
2
3
a = np.array([1,2,3,4],dtype = np.int)    #(int8,int16,int64......)
print(a)
#int 64 (defult )
  • float
1
2
3
a = np.array([1,2,3,4],dtype = np.float)#(float32......)
print(a)
#float 64(defult)

Create the specific array#

1
2
3
4
5
6
a = np.array([1,2,3,4],[5,6,7,8])
print(a)
'''
[[1,2,3,4]
[5,6,7,8]]
'''

Create the zero array#

  • all zero
1
2
3
4
5
6
7
a = np.zeros((3,4)) #3 row 4 line
print(a)
'''
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
'''
  • create array and assign data type
1
2
3
4
5
6
a = np.ones((3,4),dtype = np.int)
'''
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
'''
  • create all empty array(every value is close to zero)
1
2
3
4
5
6
a = np.empty((3,4))    #the value is close to zero, 3 row 4 line
'''
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
'''

The “arange() “ function#

arange() has three parameter, arange( , , * )

  • first
1
2
np.arange(6)
# array([0,1,2,3,4,5])
  • second
1
2
np.arange(0,6)    #the former is the initial value, the latter is the end value
# array([0,1,2,3,4,5,])
  • third
1
2
np.arange(1,3,0.5)# the third parameter is the interval value.
#array([0. , 0.5, 1. , 1.5, 2. , 2.5])

The “linspace()“ function#

linspace() can generate an well-proportion array in assigned interval range.

1
2
3
4
5
6
7
8
np.linspace(0,10,20)
'''
array([ 0. , 0.52631579, 1.05263158, 1.57894737, 2.10526316,
2.63157895, 3.15789474, 3.68421053, 4.21052632, 4.73684211,
5.26315789, 5.78947368, 6.31578947, 6.84210526, 7.36842105,
7.89473684, 8.42105263, 8.94736842, 9.47368421, 10. ])

'''

rand() function generate array in range of [ 0,1 )#

1
2
3
4
5
6
7
8
9
10
11
np.random.rand(2,3,3)
'''
array([[[0.98995132, 0.51327869, 0.35285681],
[0.64515764, 0.17032915, 0.17255685],
[0.51559337, 0.98184312, 0.32625729]],

[[0.5182059 , 0.09902392, 0.96491655],
[0.18805998, 0.74772964, 0.91896079],
[0.39425633, 0.84583609, 0.77468997]]])

'''
CATALOG
  1. 1. Create array#
  2. 2. Create array with assigned data#
  3. 3. Create the specific array#
  4. 4. Create the zero array#
  5. 5. The “arange() “ function#
  6. 6. The “linspace()“ function#
  7. 7. rand() function generate array in range of [ 0,1 )#